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1. Introduction
Management planning is often referred to as a decision-
making process, and all decision-makers need accurate 
information (Penman et al., 2003; Ganivet and Bloomberg, 
2019). Forest planners, specifically, need up-to-date 
and spatially explicit information that characterizes the 
current states of forest ecosystems not only for sustainable 
management of these limited resources but also for the 
international reporting systems (Temerit et al., 2005; Asan, 
2017; Ozkan and Demirel, 2018). Forest inventories (FIs) 
are the main data resources for these information flows. The 
primary objective of an FI is to estimate wood availability 
through mean and total measures for timber supply in 
a specific area (Kangas et al., 2006). To this end, many 
developed countries have been implementing periodic 
inventory surveys based on ground sampling for more 
than a century (Vidal et al., 2016). In Turkey, for example, 
FI surveys have regularly been implemented at the forest 
enterprise level at either 10- or 20-year intervals since 1963 

(Kayacan et al., 2016), although the first attempts can be 
dated back to more than 100 years (Başkent et al., 2005; 
Kırış, 2013). 

The most common measures for FI are diameter breast 
height (DBH), timber volume, basal area, and number 
of stems, which are used in forest management plans 
(Kangas and Maltamo, 2006; Bettinger et al., 2009; Bulut 
et al., 2016). These measures are critical because they are 
directly related to revenue; thus, a forest owner can quickly 
assess the financial status of his/her forest enterprise. More 
importantly, they allow forest planners to calculate the 
sustained yield of timber production, as well as to envision 
the future states of the forest when combined with 
growth and yield models. Briefly, the success of a forest 
management plan strictly depends on the accuracy of this 
information gained from FI data. However, data collection 
by conventional ground measurements is the most 
expensive, time-consuming, and labor-intensive stage in 
the forest planning process (Trotter et al., 1997; Eler, 2001; 
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Teremit et al., 2005; Demirel and Özkan, 2018; Kanja et 
al., 2019). Therefore, terrestrial photogrammetry and optic 
remote sensing (RS) products such as multicameras, aerial 
photos, and satellite images have been widely utilized 
for estimations of forests’ structural characteristics in 
combination with ground measurements both in Turkey 
(Demirel and Özkan, 2018; Günlü and Kadıoğulları, 2018; 
Çil et al., 2015; Bulut et al., 2016; Kanja et al., 2019; Sakici 
and Günlü, 2018; Yilmaz and Güngör, 2019) and in the 
world (Ozdemir and Karnieli, 2011; Holopainen and 
Kalliovirta, 2006; Forsman et al., 2016; Surovy et al., 2016; 
Ucar et al., 2018). Nevertheless, the estimations based on 
optic RS hardly meet the requirements for accuracy in FI 
studies compared with conventional ground measurements 
(Holopainen and Kalliovirta, 2006; Sefercik and Atesoglu, 
2017). Terrestrial photogrammetry techniques, on the 
other hand, generally suffer from unfavorable lightning 
conditions beneath the forest canopy. Thus, the image 
quality decreases and noises occur in point cloud data 
(Forsman et al., 2016). Thereby, further studies using new 
techniques are still needed for collecting more accurate 
and cost-effective data at required standards, as concluded 
recently by Ozkan and Demirel (2018), and Demirel and 
Özkan (2018).

In the 21st century, the introduction of laser scanning 
(LiDAR − Light Detection and Ranging) technology 
has opened a new era in many fields, including forestry 
(Leeuwen and Nieuwenhuis, 2010). One of the distinctive 
features of this technology is that the biophysical 
structure of trees can be measured directly through 3D 
point clouds with high accuracy (Hyyppä and Inkinen, 
1999; Oveland et al., 2018; Akay et al., 2009). Owing to 
this feature, LiDAR has allowed foresters to collect more 
accurate data on forests’ structural characteristics even 
at the individual tree level (Hyyppä et al., 2008; Akay et 
al., 2009). LiDAR instruments are grouped based on 
their platforms as: (i) spaceborne-, (ii) airborne- (ALS), 
and (iii) terrestrial-laser scanning (TLS). However, there 
are not many LiDAR missions sent into space, therefore 
spaceborne LiDAR systems are still unfamiliar, at least in 
the field of forestry (Leeuwen and Nieuwenhuis, 2010). 
In contrast, ALS is widely used for large-scale forestry 
purposes all over the world (Cabo et al., 2018; Oveland 
et al., 2018). Similarly, TLS became popular in the field of 
forestry, although it was developed mainly for engineering 
purposes. However, TLS has many limitations for practical 
forestry use. First, scanning from a fixed position limits 
usage due to obstructed areas behind large trunks and 
branches (Leeuwen and Nieuwenhuis, 2010; Bauwens et 
al., 2016). This so-called occlusion effect may be overcome 
by scanning from multiple points as Yurtseven et al. (2019) 
did on a forest plot – but it is almost impossible in an FI 
survey (Oveland et al., 2018), as hundreds of plots are 

sampled for only one forest enterprise. Other limitations 
embedded within TLS are its weight as well as equipment 
acquisition cost. Therefore, it is neither a practical nor a 
cost-effective tool for FI purposes, as already reported by 
some researchers (Wulder et al., 2008; Ryding et al., 2015; 
Apostol et al., 2018). Nevertheless, recent studies have 
suggested that such difficulties could be overcome by using 
lightweight mobile laser scanning (MLS), an emerging 
technology in the world (Bauwens et al., 2016; Oveland 
et al., 2018). Unlike TLS, MLS continuously collects data 
in the forest while an operator easily carries the handheld 
instrument through sampling plots. Using handheld 
MLS (HMLS) technology, which significantly reduces 
the operation time (Ryding et al., 2015), forest stands can 
be digitized and single-tree parameters can be effectively 
calculated via 3D point clouds. Some researchers have 
successfully used this system for modeling purposes in 
the forests of the UK, Spain, and Italy (Ryding et al., 2015; 
Cabo et al., 2018; Giannetti et al., 2018; Del Perugia et al., 
2019).

As for Turkey, several Turkish researchers used LiDAR 
technology abroad in the previous decade (Akay, 2004; 
Ozdemir and Donoghue, 2013; Genç et al., 2004) and 
introduced its potential applications in forestry to the 
national foresters (Genç et al., 2004; Akay et al., 2009; 
Özdemir, 2013a, 2013b). However, no forestry studies 
have been conducted using this technology in Turkey 
until the last few years, mainly due to the limitations of 
traditional LiDAR instruments described above. Finally, 
such studies have progressively emerged in Turkey (see 
Yurtseven et al., 2019; Arslan et al., 2016; Büyüksalih et 
al., 2017, among others), like in many other developed 
countries. Akgül et al. (2016), for instance, estimated 
DBH, tree height, and crown base height using TLS on 
the campus of Istanbul University. They found that there 
were no statistically significant differences between TLS 
data and ground measurements. Şahin et al. (2018), on the 
other hand, successfully detected tree locations on a small 
afforestation site by using ALS data in İzmir. All these 
studies, except for Kanja (2016) and Özkal (2017), were 
conducted in relatively small and uniformly structured 
“artificial landscapes” (e.g., park, campus, plantation area, 
urban greenings, etc.), where trees are located individually 
in certain patterns. In contrast, Kanja (2016) studied 
natural Calabrian pine forests in Bergama State Forest 
Enterprise. He estimated timber volume, number of trees, 
and mean height using ALS data. Özkal (2017), in another 
study, estimated the number of trees with the help of ALS 
for Oak-Maritime pine mixed forests in Bentler State 
Forest Enterprise. The studies pointed out that estimating 
FI measures for “natural landscapes” was challenging 
work, as they presented complex structures in terms of 
topography and species composition (see also Gadow et 
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al., 2012). To the best of our knowledge, there is no other 
LiDAR study for practical FI use in Turkey so far. 

Therefore, the objective of this study was to evaluate 
state-of-the-art HMLS technology for FI purposes with 
its first practical application in Turkey. Our approach is 
to compare basic FI measures that were conventionally 
calculated by ground measurements with the same 
measures derived from HMLS data. To this end, nine 
sampling plots showing different stand structures were 
set up in Artvin and Saçınka State Forest Enterprises. The 
results are expected to support management planners by 
providing them more accurate and timely information on 
forest resources. It can be useful for the Turkish FI system, 
especially in terms of reducing costs and workforce.

2. Materials and methods
2.1. Study area and sampling design
The study areas consisted of nine sampling plots located at 
Artvin and Saçınka Forest Enterprises, NE Turkey (Figure 

1). Because the area is in the Caucasus Biodiversity Hotspot 
(CEPF, 2013), thus consisting of highly diverse and mixed 
temperate forests that are one of 200 priority ecoregions 
in the world (Manvelidze et al., 2009), it has enormous 
ecological importance. The topography of the region is very 
mountainous with altitudes as high as 3000 m. The climate 
is characterized by cold winters and hot summers with 
average annual precipitation of 753 mm between 1987 and 
2017 (SMS, 2018). Dominant tree species are the Caucasian 
spruce (Picea orientalis L.), Scots pine (Pinus sylvestris L.), 
Caucasus fir (Abies nordmanniana Stev. Matt.), oriental 
beech (Fagus orientalis), sweet chestnut (Castanea sativa 
Mill.), and Çoruh oak (Quercus dschorochensis) in either 
pure or mixed forest stands. Moreover, stone pine (Pinus 
pinea)—a typical Mediterranean tree species—exists locally, 
especially on the bottom of V-shaped valleys in Hatila 
National Park. Regarding soil types, shallow sandy loam 
soils are common, showing distinct A- and C-horizons with 
almost no B-horizon in their profiles (Sariyildiz, 2008).

Plot 9: Young Beech forest

Plot 4: S.p�ne-Spruce m�xed forest

Plot 2: Mature Spruce forest

Figure 1. Location of the study area with sampling plots. 
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Nine sampling plots differing in size were specifically 
designed based on stand types identified by tree species, 
canopy closure, and developmental stage, as in the Turkish 
FI system (GDF, 2017). Figure 2 shows the Scots pine plot 
on a poor and rocky site. Notable irregularities of tree 
stems can be easily seen both on the photograph and in 
point cloud data (Figures 2a and 2b). Further information 
about other sampling plots is given in Table 1.
2.2. Instrumentation and operational principles of HMLS
In this study, Zeb-Revo, which was commercialized 
by GeoSLAM Ltd. company (Geoslam, 2018), is used 
as an HMLS instrument. The main components of the 
instrument are a laser scanner and a low-cost Inertial 
Measurement Unit (IMU) on a rotary engine (Figure 3a). 
The ability to operate independently of Global Navigation 
Satellite System (GNSS), as well as its Simultaneous 
Localization and Mapping (SLAM) algorithm, make 
HMLS ideal for detail extraction studies, particularly 
in areas where it is difficult to receive a signal from GPS 
satellites (e.g., forest, tunnel, mine, etc.). Moreover, 1-kg 
weight makes it more functional, especially in the woods 
(Figure 3b). Owing to these attributes, instant point cloud 
data are generated by calculation of 3D laser distance and 
IMU-based angles. As it moves, the data is continuously 
combined from the previous moment to the next using 
SLAM technology. This technology enables scanning the 
same objects at different points through a moving user 
or platform. The only requirement for SLAM is that the 
objects have to be stationary during scanning, which 
is usually the case for tree stems in a forest. Finally, the 
alignment process is performed by the Iterative Closest 
Point algorithm (Besl and McKay, 1992) used for 
registering point clouds. According to the manufacturer 
(Geoslam, 2018), Zeb-Revo has a horizontal resolution 
of 0.625° with a relative error of a maximum of 2–3 cm. 
Nevertheless, these error rates meet the required standards 
for large-scale forestry projects. The scanning range of 
the instrument is a maximum of 30 m at 90% reflectance 
rate. It has a measuring ratio of 43,200 per second with a 
scanning speed of 100 MHz.
2.3. Methods
The methodology is mainly based on the approach that 
is comparing HMLS data against conventional ground 
measurements via basic FI measures, such as average 
DBH and timber volume. Based on that approach, we 
drew a flow chart of this study in Figure 4. More detailed 
information on workflow steps is given in the following 
subsections.
2.3.1. Data acquisition and processing
As a first step, point cloud data were acquired by walking 
with Zeb-Revo instrument at hand. Walking routes were 
planned as a closed loop. Free walking from the reference 
target (i.e., the marked stake for plot center) towards the 

plot border was performed on each sampling plot. Then, 
the loop was closed by returning to the plot center (Figure 
5a). The data acquisition step lasted between 3 and 9 min, 
depending on plot size and topography.

In the next step, raw point cloud data were processed 
using GeoSLAM Desktop software at the office. It lasted 
about 20 min for all plots’ data. Then, processed data were 
converted to the .las file format for efficient handling in 
GIS software. Though tree coordinates were unnecessary 
for most FI studies at the (forest) landscape level, no 
geo-referencing was performed to point cloud data. 
The data were directly clipped based on sampling size, 
taking the reference target as plot center (Figure 5b). 
Since the reference target was visible on the point cloud, 
the clipping process was rather straightforward. As such, 
3D visualization of stand structures was performed with 
a modest laptop computer with an i5 processor. These 
processes were iteratively repeated for each plot.

As for single-tree extraction, point cloud data were first 
classified using cloth simulation filtering algorithm (Zhang 
et al., 2016) based on ground and aboveground points. In this 
way, tree height measurements were made easier on data and 
data density was reduced for faster processing on the laptop 
computer. Then, distances from aboveground locations 
(i.e., tree heights) were calculated based on the Euclidean 
algorithm. This algorithm refers to the ordinary straight 
distance in Z-axis between the point of interest and ground 
level in a Euclidean space, and is referred to as normalization 
(Anton and Rorres, 2010). In the next step, the height interval 
for DBH measurements was determined between 1.28 and 

Figure 2. (a) General view of plot 8 located on a rocky site; (b) 3D 
visualization of the same plot on HMLS data.
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1.33 m above ground points as tree DBH was measured at 
1.30 m above ground level as in the Turkish FI system (GDF, 
2017). The 5-cm-thick disks were then extracted from the 
entire point cloud data (Figure 5c), and circles were fitted to 
them using the Least Square Estimation algorithm (Chernov 
and Lesort, 2005) in Polyworks software. In this step, the 
number of circles was considered as the number of trees 
for each plot. Finally, the diameters of those circles were 
calculated and recorded as DBH for each tree (Figure 5d).

2.3.2. Ground measurements
In the present study, ground measurements were 
conventionally performed based on the “timber stock 
inventory method” documented in the Turkish forest 

Table 1. Main characteristics of the sampling plots.

Plot no. XY coordinates Forest
entpr.

Elev. 
(m) Aspect Plot size 

(m2)
Plot 
shape*

Stand
type**

Stand 
density

1 41°09′40″ – 41°47′34″ Artvin 1271 NE 1000 R Lde3 1.14
2 41°09′39″ – 41°47′37″ Artvin 1253 NE 1000 R Lcd3 1.35
3 41°09′47″ – 41°47′28″ Artvin 1260 NE 2000 R Lde3 1.26
4 41°09′50″ – 41°47′42″ Artvin 1269 E 400 C Çscd2 1.06
5 41°09′49″ – 41°47′58″ Artvin 1205 Flat 800 C Lcd3 1.16
6 41°09′50″ – 41°47′55″ Artvin 1200 Flat 1600 R Lcd3 1.17
7 41°12′16″ – 41°50′01″ Saçınka 940 S 600 C Çscd2 0.90
8 41°12′15″ – 41°50′04″ Saçınka 917 SE 800 C Çsd1 0.76
9 41°13′06″ – 41°49′40″ Saçınka 1364 SE 400 C Knbc3 1.39

*R: rectangular; C: circle.
**Stand types were given in their original codes, as in Turkish forestry system. Accordingly, the first uppercases refer to tree 
species: L for spruce, Çs for Scots pine, and Kn for beech; the lowercases refer to developmental stage: b for poles (8–20 cm), c 
for thin trees (20–36 cm), d for medium trees (36–52 cm), and e for large trees (≥ 52 cm); the digits refer to canopy closure: 1 
for sparsely-closed, 2 for medium-closed, and 3 for fully-closed stands (GDF, 2017).

b)

a)

Figure 3. (a) General view of the Zeb-Revo instrument; (b) View 
of the instrument during data acquisition on plot 4 (Çscd2 stand). (P

Figure 4. The general workflow of the present study.
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management regulation (GDF, 2008) and its detailed 
guideline (GDF, 2017). First, a Garmin GPS receiver was used 
for recording the coordinates of sampling plots in the field. 
Then, plot borders were determined by a Vertex hypsometer 
based on the sampling size. Owing to transponder adapter 
and monopod of the hypsometer, no cord was needed to 
range finding for suspicious trees near the plot borders. In 
a sampling plot, all trees with DBH more than 7.9 cm were 
marked, enumerated, and measured at breast height using 
Haglöf caliper by species (Figure 6a). Concurrently, their 
stem qualities were visually assessed according to the forest 
management guideline (GDF, 2017). Then, tree heights were 
measured using the hypsometer for 4, 6, or 8 representative 
trees on a plot (i.e., 100 trees per hectare). In the next step, 
the surface slope rate was determined with the help of a 
clinometer in percent unit. Finally, we assessed other forestry 
parameters such as stand type and sapling recruitment 
and recorded all data into inventory sheets (Figure 6b). 
No measurement was performed for diameter increment 
or tree age since they have been rarely assessed during the 
current Turkish FI surveys in practice. Instead, the number 
of saplings and the number of stumps were counted, if any. 
The minimum DBH threshold was 4 cm for the stumps.  

2.3.3. Calculation of inventory measures
Data from each plot measured by both conventional 
and HMLS methods was used to calculate the basic FI 
measures, including timber volume, basal area, number 
of trees, number of saplings, and number of stumps. 
Respective yield models (Ercanlı and Yavuz, 2006) and 
local volume tables (GDF, 2006a; 2006b) were utilized 
to calculate individual stem volumes on each plot. Then, 
Equation 1 and Equation 2 were used for calculating basic 
FI measures at the plot level (Asan, 2017). Finally, all FI 
measures were standardized to per unit area (i.e., 1 ha) 
using Equation 3 for making a consistent comparison 
amongst the plots differing in size (Asan, 2017).

TV = ∑ V (1)
G = (π / 4) × ∑ d1,30

2 (2)
CCH = 10000 / SPS (3)

Where TV is the total timber volume of a sampling plot 
(m3), V is the commercial stem volume for each standing 
tree in a sampling plot (m3), G is the basal area of a sampling 
plot (m2), d1.30 is the DBH of each tree on a sampling plot, 
CCH is the coefficient of conversion to hectare (unitless), 
and SPS is the sampling plot size (m2).

c) d)

a) b)

Figure 5. (a) Trajectory for LiDAR survey in plot 4 (Çscd2 stand); (b) 3D visualization of plot 9 (Knbc3 stand); (c) extracted tree 
disks at 1.30 m above ground level; (d) DBH calculation on a fitted circle.
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2.3.4. Statistical analyses
After controlling whether ground- and HMLS-derived 
datasets are normally distributed, DBH of individual trees 
were sorted by ascending and then subjected to Pearson’s 
correlation analysis. If data were not showing a normal 
distribution, Spearman’s correlation analysis was preferred. 
Paired samples t-test was used to see if there are any 
statistically significant differences between the two datasets 
at the plot level in terms of DBH. Finally, a residual analysis 
was performed to evaluate the distribution of errors. All 
analyses were performed in R software (R Core Team, 2018) 
at minimum 95% confidence level.

3. Results
3.1. DBH estimations
Except for plot 8, all sampling plots showed a normal 
distribution (P > 0.05), as expected under natural forest 
conditions (Table 2). The tree forms on plot 8, on the other 
hand, had some irregularities and human-induced defects, 
as shown in Figure 2. The average DBH of 437 trees was 34.2 
cm, as seen in the box-plot graphic (Figure 7). HMLS method 
yielded slightly higher DBH values than conventional ground 
measurements. Statistical analyses found robust and positive 
correlations between ground measurements and HMLS data 
for DBH (P < 0.01). Accordingly, correlation coefficients 
ranged between 0.978 and 0.998. Paired samples t-test, 
moreover, indicated there were no significant differences 
between two datasets in any sampling plots at 95% confidence 
level (Table 2). Thus, the HMLS method was found to be 
reliable for DBH estimations in Turkish FI system both at the 
individual tree and at plot levels.  

Residual analysis showed that both positive and 
negative errors had a homogeneous distribution along the 
zero lines, except for plot 8. The residuals of plot 8 had a 
nonhomogeneous distribution pattern, as seen in Figure 
8. It was the only plot that was not showing a normal 
distribution. Overall, no significant bias was found in the 
residuals for 437 trees at the plot level. 
3.2. Basic inventory measures
Necessary FI measures, including the number of trees, 
basal area, and timber volume were calculated based 
on the DBH data reported in the previous subsection. 
The bar charts related to these measures were given in 
Figure 9 by sampling plots at the landscape level (i.e., 
forest enterprise). Regarding the number of trees, two 
datasets showed considerable similarity, as no additional 
calculation was conducted for tree counting. The average 
positive difference for the number of trees was only 
0.6% at the landscape level. Such overestimations by the 
HMLS method yielded slightly higher results in basal 
area and timber volume too (Figure 9). Nevertheless, the 
differences were less than 10% on average – 8.9% for basal 
area and 9.8% for timber volume. When all sampling plots 
were aggregated, HMLS estimated the average values for 
the number of trees, basal area, and timber volume as 535 
trees/ha–1, 49.6 m2/ha–1, and 499.7 m3/ha–1, respectively. 
Overall, the HMLS method was found to be suitable for 
deriving necessary FI measures in the Turkish FI system at 
the landscape level (i.e., for per unit area, 1 ha).  
3.3. Additional measures
Apart from basic measures, additional FI parameters, 
including the number of saplings, number of stumps, tree 
heights, and surface slope were estimated using HMLS 
data. Amongst them, the best fit was provided on the 
number of saplings. Both over- and under-estimations 
were observed for this measure, as seen in Figure 10. 
As for the number of stumps – plot 4, plot 8, and plot 9 
were estimated entirely, too. Exceptionally, tree height 
estimations were very poor, with negative differences more 
than 50%, and thus they were not reported in this paper. 
In general, estimations on additional measures were more 
accurate than those of basic FI measures’, as they owed 
their accurate estimates to be directly counted one by one 
− except for surface slope. Contrastingly, basal area and 
timber volume required extra equations (i.e., Equation 2, 
Ercanlı and Yavuz, 2006) or volume tables (GDF, 2006a; 
2006b) for the final calculation. Slope data, on the other 
hand, generally showed bias in a positive direction 
compared to ground truth measured by a clinometer. They 
were underestimated by the HMLS method on almost 
every plot (Figure 10). When all plots were taken together, 
however, average slope rates were somehow consistent 
despite ca. 15% difference between the two datasets. It was 

a) b)

Figure 6. (a) A marked tree located on the plot center; (b) 
recording tree data into an inventory sheet.
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attributed to different slope directions considered by the 
two methods.

4. Discussion
In general, the HMLS method overestimated tree DBH 
in all sampling plots. One reason for this may be the 
quality of ground measurements in Turkish FI system, as 
recently pointed out by Büyüksalih et al. (2017). During 
FI surveys in Turkey, DBH is measured by a caliper on 
the uphill side of the tree (GDF, 2017). For noncircular 
stems, two measurements—at 90° angles to each other—
are performed, and their arithmetic means are recorded 
into inventory sheets. However, many error sources are 
embedded in this approach. These likely stem from the 
measuring position of the operator (e.g., determining the 
breast height, slope direction, right angles, etc.), trees with 
noncircular cross-sections, and/or the variation in bark 
thickness, especially for pine species. For breast height, 

1.37 m above ground level is used in the USA, while 1.20 
m is used in Japan (Laar and Akça, 2007). We measured 
DBH at 1.30 m above ground level, as is done in Turkey 
and most other parts of the world. Since a tree stem is 
not fully cylindrical, the diameter tends to decrease as it 
moves upward along the stem. Therefore, DBH may vary 
depending on the measurement height. In order to perform 
more accurate and reproducible results, collar diameter 
may be measured at a fixed distance from the base of the 
tree using a diameter tape. The diameter tape can measure 
tree DBH almost error-free from the circumference of the 
stem by dividing it with pi. Because it is less affected by the 
shape of the stem, diameter tape provides more accurate 
results compared with caliper measurements (Laar and 
Akça, 2007). That is why collar diameter is preferred in 
nursery and regeneration studies, in which precise DBH 
measurements are needed. Eventually, it was evaluated 
that—like in Akay et al. (2012) and Büyüksalih et al. 
(2017)—the low quality of the ground data is likely to be 
responsible for the overestimations by HMLS method.

This study has revealed that as stem quality gets higher, 
estimation accuracy increases as well. Relatively poor 
estimates were generally obtained from plot 7 and plot 
8, which were located on poor sites with anthropogenic 
pressures such as illegal cutting and grazing in forested 
lands. On these plots, tree stems were in irregular shapes 
due to defects or poor technical quality. There were also 
many crooked and protruding stems on these sites. As 
such, stand structures were far from naturalness in terms 
of size class distribution. Although the forest enterprise 
was managed by the even-aged system (GDF, 2006b), 
both small- and large-sized trees coexisted on the plots. 
In another LiDAR study, Apostol et al. (2018) obtained 
similar findings in the Southern Carpathians forests. They 
observed higher error rates in DBH within the stands that 

Table 2. Statiscal test results by sampling plots.

Plot no. n* Distribution Correlation
test

r
coefficient

P-values
(for t-test)

1 36 Normal Pearson 0.996 0.22
2 71 Normal Pearson 0.997 0.36
3 105 Normal Pearson 0.998 0.16
4 18 Normal Pearson 0.992 0.52
5 37 Normal Pearson 0.996 0.67
6 82 Normal Pearson 0.994 0.36
7 23 Normal Pearson 0.978 0.50
8 16 Not normal Spearman 0.998 0.70
9 49 Normal Pearson 0.993 0.76

*n: Sample size (number of trees on a sampling plot).
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had higher coefficients of variation. Contrastingly, the 
errors were relatively low in the case of DBH variation 
coefficient of less than 40%. The high level of error rates 
was attributed to the inappropriate interventions in the 
forest. Nonetheless, the Turkish FI system focuses more 
on managed forests, showing a somehow homogeneous 
structure and generally located on good sites. Unlike 
managed forests, sampling density is reduced by a quarter 
on unmanaged forests that are set aside for conservation or 
nonprovisional ecosystem services (GDF, 2017; Demirel 
and Özkan, 2018). Since stem quality is higher in managed 
forests, no problem seems to arise in our approach, as 
we were able to estimate DBH much better for plots 1, 
2, 3, 5, and 9. These plots had good site conditions with 
elite trees. Aside from site conditions, the dominant tree 
species (Scots pine) may be another reason leading to 
overestimations in DBH. It is well known that this species 
may make thick and fissured bark on the lower trunk, 
especially in its maturity period. As a matter of fact, the 
developmental stage of plot 7 and plot 8 was d (i.e., 36–52 
cm in DBH), indicating older ages in Scots pine’s lifespan. 
Therefore, the bark roughness of this species might explain 
the errors encountered by both conventional and HMLS 
methods in low-quality stems.

The correlation analyses showed that our results were in 
good agreement with other LiDAR studies in the literature. 

In the present study, tree DBH estimates by HMLS method 
were strongly and positively correlated with conventional 
ground measurements. Using HMLS we found that all 
correlation coefficients were higher than 0.97 in all plots 
at the individual tree level. Using TLS, Pazhouhan et al. 
(2017) saw a strong relationship between the two methods 
with an R2 value of 0.98 for DBH in the Hyrcanian forest. 
Similarly, Yurtseven et al. (2019) found an R2 value of 
0.99 for DBH in Istanbul, Turkey. In another study, Akgül 
et al. (2016) reached an R2 value of 0.97 for the same 
measure in Istanbul too. Unlike ours, their LiDAR-derived 
DBH estimates were lower than ground measurements. 
Comparing ALS and ground measurements, Akay et 
al. (2012) also found a strong relationship between two 
datasets with an R2 value of 0.92 in Oregon, USA; however, 
they measured crown widths instead of DBH. As for 
Germany, Heurich (2008) estimated timber volume using 
ALS with 85.2% accuracy level in a Spruce-Beech mixed 
forest. Many other studies using different LiDAR data 
reported similar findings on the topic (Moskal and Zheng, 
2012; Srinivasan et al., 2015, among others). Thus, our 
experimental findings are generally consistent with the 
relevant literature.

The overall results indicate that there appears to be no 
shortcoming in DBH estimations with HMLS technology 
in terms of accuracy. Estimating tree heights and canopy 
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cover, on the other hand, was indeed a significant challenge 
using Zeb-Revo instrument in our case. In particular, the 
tops of the tall trees were invisible to the instrument from 
the forest floor due to its limited scanning range (ca. 16–17 
m in practice). Although most recent mobile instruments 
can reach up to 100 m (e.g., Velodyne VLP-16), both lower 
branches and dense crowns in natural forests limit the 
visibility of the tree tops, especially in deciduous forest 
plots. Therefore, no reliable estimates were achieved on tree 
height nor canopy cover during the present study. Other 
researchers experienced this shortcoming in their studies 
as well. Cabo et al. (2018), for instance, underestimated 
the heights of tally trees using the HMLS method on 
urban green space in NE Spain. Indeed, this is likely the 
most significant problem of HMLS for the field of forestry. 

Combining HMLS data with the point clouds produced 
by Unmanned Aerial Vehicles (UAV) or ALS may be the 
right solution for this, as proven by Giannetti et al. (2018) 
in Italy. Fortunately, no quantitative information is required 
for either height or canopy in the current Turkish FI surveys 
(GDF, 2017). Since they are secondary measures for timber 
inventories, no measurement is performed for tree height; 
on the other hand, canopy cover is determined by a field 
engineer as three broad closure classes based on observation, 
as described in the footnotes of Table 1. Thus, foresters can 
quickly identify the closure class while walking through a 
forest plot with an MLS at hand. To date, DBH value with 
reasonable accuracy is still the key measure of FI surveys, as 
it is nearly sufficient for assessing wood availability within 
forest enterprises (Kangas et al., 2006).  
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Unlike ground measurements, HMLS-derived raw 
data needs postprocessing efforts in order to derive 
meaningful information on FI measures. However, we 
processed it using a modest laptop computer in a relatively 
short time (ca. 20 min for nine plots). Therefore, easy 
data processing may be considered another advantage 
of HMLS compared to other LiDAR instruments. Many 
studies using TLS instruments, for instance, required 
high-tech workstations (Yurtseven et al., 2019, among 
others) or a long time period of up to 10 h (Apostol et 
al. 2018). Considered with the necessary working time in 
the field—reaching more than one hour per plot in some 
cases— its operational use in an FI study is minimal, at 
least for now (Ryding et al., 2015; Oveland et al., 2018; 
Cabo et al., 2018). These limitations embedded in TLS 
mainly result from very dense point cloud data, as well as 
its geo-referencing processes, whereas both of them are 
actually unnecessary for most of the FI studies. Despite 
the higher precision of point clouds recorded with TLS, 
Cabo et al. (2018) showed that there was no significant 
difference in DBH estimations by both HMLS and TLS 
at individual tree level (P < 0.05). As a matter of fact, the 
key object in FI is the general structure of the forest at 
the landscape level (i.e., for forest enterprise) from a forest 
management point of view. It seems, however, that most 
recent TLS-based forestry research became so involved 
in details that “they cannot see the forest for the trees.” 
For this reason, the right balance between efficiency and 
effectiveness should always be struck in the course of 
compelling forestry research. 

In this study, HMLS technology was tested using 
a mobile LiDAR instrument, particularly for FI 
purposes, through the lens of forest management and 
planning. Data validation was done by comparison with 

conventional ground measurements via some FI measures 
such as average DBH and timber volume. Statistically, no 
significant difference was found between the two datasets 
(P < 0.05). There were powerful correlations for DBH at 
individual tree level (r > 0.97; P < 0.01). At the landscape 
level, the slight differences in estimating the average DBH, 
number of trees, basal area, and timber volume were 5%, 
0.6%, 8.9%, and 9.8%, respectively. Moreover, additional 
forestry parameters, including the number of saplings, 
number of stumps, and surface slopes were successfully 
estimated on point cloud data. However, we could not do 
reliable estimations on tree heights using HMLS data.  

In conclusion, HMLS is evaluated as the most suitable 
method among other LiDAR approaches for FI purposes 
in Turkey. It can be used in timber surveys as easily as 
walking through forest sampling plots, and thus FI data 
are collected at required standards. In this way, the Turkish 
FI system can gain time and cost efficiency in practice. 
For these reasons, it is likely that HMLS will soon start 
attracting more attention in the field of forestry. Therefore, 
future efforts should focus on developing automatic height 
extraction algorithms for the vertical structure of forest 
ecosystems. It is of equal importance to integrate low-
cost sensors into HMLS instruments through speeding 
up research and development processes, as equipment 
acquisition costs are still a significant constraint for low- 
and middle-income countries.
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